On multivariate $p$-adic $q$-integrals

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2001 J. Phys. A: Math. Gen. 347633
(http://iopscience.iop.org/0305-4470/34/37/315)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.98
The article was downloaded on 02/06/2010 at 09:17

Please note that terms and conditions apply.

# On multivariate $\boldsymbol{p}$-adic $\boldsymbol{q}$-integrals 

Taekyun Kim ${ }^{1,4}$, Dal-Won Park ${ }^{2}$ and Seog-Hoon Rim ${ }^{3}$<br>${ }^{1}$ Institute of Science Education, Kongju National University, Kongju, South Korea<br>${ }^{2}$ Mathematics Education, Kongju National University, Kongju, South Korea<br>${ }^{3}$ Mathematics Education, Kyungpook National University, Taegu, South Korea<br>E-mail: tkim@kongju.ac.kr, taekyun64@hanmail.net

Received 19 April 2001, in final form 24 July 2001
Published 7 September 2001
Online at stacks.iop.org/JPhysA/34/7633


#### Abstract

By using multiple $p$-adic $q$-integrals, we define the $p$-adic $q$ - $L$-function in $n$-variables and the $q$-extension of $p$-adic log multiple gamma functions. From these definitions, we show that the values of the $p$-adic $q$ - $L$-function at positive integers can be expressed in terms of the $q$-extension of $p$-adic log multiple gamma functions.


PACS number: 02.10.De
Mathematics Subject Classification: 11S80

## 1. Introduction

Let $p$ be a fixed prime and let $\mathbb{C}_{p}$ denote the $p$-adic completion of the algebraic closure of $\mathbb{Q}_{p}$. For $d$ a fixed positive integer with $(p, d)=1$, let

$$
\begin{array}{ll}
X=X_{d}=\underset{N}{\lim } \mathbb{Z} / d p^{N} \mathbb{Z} & X_{1}=\mathbb{Z}_{p} \\
X^{*}=\bigcup_{\substack{0<a-d p \\
(a, p)=1}} a+d p \mathbb{Z}_{p} & \\
a+d p^{N} \mathbb{Z}_{p}=\{x \in X \mid x \equiv a & \left.\left(\bmod d p^{N}\right)\right\}
\end{array}
$$

where $a \in \mathbb{Z}$ lies in $0 \leqslant a<d p^{N}$.
The $p$-adic absolute value in $\mathbb{C}_{p}$ is normalized so that $|p|_{p}=\frac{1}{p} . C\left(\mathbb{Z}_{p}, \mathbb{C}_{p}\right)$ will denote the set of all continuous $f: \mathbb{Z}_{p} \rightarrow \mathbb{C}_{p}$. Let $U_{1} \subset \mathbb{C}_{p}$ denote the open unit disc about 1 and $U_{d}=\left\{u \in \mathbb{C}_{p} \| u^{d}-\left.1\right|_{p}<1\right\}$ the union of the open unit discs around $d$ th root of unity. Let $U^{m}=U_{d} \times U_{1}^{m-1}$. When one talks of $q$-extension, $q$ is variously considered as an indeterminate, a complex number $q \in \mathbb{C}$ or a $p$-adic number $q \in \mathbb{C}_{p}$. If $q \in \mathbb{C}$, then we

[^0]normally assume $|q|<1$. If $q \in \mathbb{C}_{p}$, then we normally assume $|q-1|_{p}<p^{-\frac{1}{p-1}}$, so that $q^{x}=\exp (x \log q)$ for $|x|_{p} \leqslant 1$. Throughout this paper, we use the following notation:
$$
[x]=[x: q]=\frac{1-q^{x}}{1-q} .
$$

In this paper, we construct the $p$-adic $q$ - $L$-function in $n$-variables and the multiple $p$-adic $q$-log gamma function by using the values of the multiple $p$-adic $q$-integral. Finally, we give the formulae which express the values of the $p$-adic $q$ - $L$-function in $n$-variables at positive integers in terms of the multiple $p$-adic $q$-log gamma functions.

In [1, 2], the authors studied orthogonal and symmetric operators in non-Archi-medean Hilbert spaces in connection with $p$-adic quantization.

Orthogonal isometric isomorphism of $p$-adic Hilbert spaces preserves precision of measurements. In [1], the authors also studied the properties of orthogonal operators.

As the quantum field theory allows infinite degree of freedom, we need to propose an infinite-dimensional non-Archimedean analysis if we wish to study quantum field theory with non-Archimedean valued fields. Such analysis has already been presented by Khrennikov in [3].

The quantization of a bosonic non-Archimedean valued field is carried out in the functional integral formalism [3]. Khrennikov [4] tried to build a p-adic picture of reality based on the field of $p$-adic numbers $\mathbb{Q}_{p}$ and the corresponding non-Archimedean analysis. He showed that many problems of description of reality with the aid of real numbers are induced by unlimited application of the non-Archimedean axiom. This axiom means that the physical observable can be measured with an infinite exactness. Khrennikov's $p$-adic model of physical reality is based on a finite exactness of measurement which violates the Archimedean axiom.

As with the above $p$-adic model of physical reality, our results stimulate quantum mechanics by using mathematical apparatus, namely, the properties of the $q$-analogue of zeta function, the definition of $p$-adic $q$ - $L$-functions and $q$-Mahler's theory of $p$-adic $q$-integration with respect to a ring $\mathbb{Z}_{p}$ of $p$-adic integers. Iwasawa isomorphism and the $p$-adic $q$-log gamma functions are used in sections 2 and 3, repectively.

## 2. $p$-adic $q$-integral on compact subgroups of $\mathbb{C}_{p}$.

For $f \in C^{(1)}\left(\mathbb{Z}_{p}\right)=\left\{\right.$ the set of strictly differentiable functions on $\left.\mathbb{Z}_{p}\right\}$, let us start with the expressions

$$
\begin{equation*}
\frac{1}{\left[p^{N}\right]} \sum_{0 \leqslant j<p^{N}} q^{j} f(j)=\sum_{0 \leqslant j<p^{N}} f(j) \mu_{q}\left(j+p^{N} \mathbb{Z}_{p}\right) \tag{3,5,6}
\end{equation*}
$$

representing the $q$-analogue of the Riemann sums for $f$. The integral of $f$ on $\mathbb{Z}_{p}$ will be defined as the limit $(N \rightarrow \infty)$ of these sums, when it exists.

The $p$-adic $q$-integral of a function $f \in C^{(1)}\left(\mathbb{Z}_{p}\right)$ is defined by

$$
\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{q}(x)=\lim _{N \rightarrow \infty} \frac{1}{\left[p^{N}\right]} \sum_{0 \leqslant j<p^{N}} f(j) q^{j}
$$

For $f \in C^{(1)}\left(\mathbb{Z}_{p}\right)$, it is easy to see that

$$
\left|\int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{q}(x)\right|_{p} \leqslant p\|f\|_{1}
$$

where $\|f\|_{1}=\sup \left\{|f(0)|_{p}, \sup _{x \neq y}\left|\frac{f(x)-f(y)}{x-y}\right|_{p}\right\}$.

If $f_{n} \rightarrow f$ in $C^{(1)}$, namely $\left\|f_{n}-f\right\|_{1} \rightarrow 0$, then

$$
\int_{\mathbb{Z}_{p}} f_{n}(x) \mathrm{d} \mu_{q}(x) \rightarrow \int_{\mathbb{Z}_{p}} f(x) \mathrm{d} \mu_{q}(x)
$$

(see [4]). The $q$-analogue of the binomial coefficient is known as

$$
\left[\begin{array}{l}
x \\
n
\end{array}\right]=\frac{[x][x-1] \cdots[x-n+1]}{[n]!} \quad \text { where } \quad[n]!=\prod_{i=1}^{n}[i] \quad(\text { cf. [2]). }
$$

Note that

$$
\left[\begin{array}{c}
x+1 \\
n
\end{array}\right]=\left[\begin{array}{c}
x \\
n-1
\end{array}\right]+q^{x}\left[\begin{array}{l}
x \\
n
\end{array}\right]=q^{x-n}\left[\begin{array}{c}
x \\
n-1
\end{array}\right]+\left[\begin{array}{l}
x \\
n
\end{array}\right] .
$$

Thus we see that

$$
\int_{\mathbb{Z}_{p}}\left[\begin{array}{l}
x \\
n
\end{array}\right] \mathrm{d} \mu_{q}(x)=\frac{(-1)^{n}}{[n+1]} q^{n+1-\binom{n+1}{2}} .
$$

For any $a=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{U}^{m}$, let $\mu_{q}$ denote the $p$-adic distribution on $X^{m}$ which is defined on the standard basis of the compact-open sets by

$$
\mu_{q}\left(a+d p^{N} X^{m}\right)=\frac{q^{a}}{\left[d p^{N_{1}}\right]\left[p^{N_{2}}\right] \cdots\left[p^{N_{m}}\right]}
$$

where the notation $a+d p^{N} X^{m}=\left(a_{1}+d p^{N_{1}} \mathbb{Z}_{p}\right) \times\left(a_{2}+p^{N_{2}} \mathbb{Z}_{p}\right) \times \cdots \times\left(a_{m}+p^{N_{m}} \mathbb{Z}_{p}\right) \subset X^{m}$, $q^{a}$ denotes $\prod_{j} q^{a_{j}}$. Then we have the following:
Theorem 1. For any uniformly differentiable function $f: X^{m} \rightarrow \mathbb{C}_{p}$, we have

$$
\int_{X^{m}} f(x) \mathrm{d} \mu_{q}(x)
$$

which is bounded and locally analytic in each $q$ on $U^{m}$.
Proof. Theorem 1 is proved by the definition of $p$-adic $q$-integral [5, 6].
Corollary 1. For any $b_{1}, b_{2}, \ldots, b_{r} \in \mathbb{Z} \geqslant 0, y=\left(y_{1}, \ldots, y_{r}\right) \in \mathbb{Z}_{p}^{r}$, we see that

$$
\int_{\mathbb{Z}_{p}^{r}}\left[y_{1}\right]^{b_{1}}\left[y_{2}\right]^{b_{2}} \cdots\left[y_{r}\right]^{b_{r}} \mathrm{~d} \mu_{q}(y)
$$

is the coefficient of $\frac{t_{1}^{b_{1}} \ldots t_{r}^{b^{r}}}{b_{1}!b_{2}!\cdots b_{r}!}$ in the Laurent expansion of the function

$$
\prod_{l=1}^{r}\left(\mathrm{e}^{\frac{t_{l}}{1-q}} \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t_{l}^{j}}{j!}\right)
$$

The proof of Corollary 1 is not difficult [5].
Note that

$$
\begin{array}{r}
\int_{\mathbb{Z}_{p}^{r}}\left[y_{1}\right]^{b_{1}} \cdots\left[y_{r}\right]^{b_{r}} \mathrm{~d} \mu_{q}(y)=\lim _{N_{1}, \ldots, N_{r} \rightarrow \infty} \frac{1}{\left[c_{1} p^{N_{1}}\right] \cdots\left[c_{r} p^{N_{r}}\right]} \\
\times \sum_{1 \leqslant j \leqslant r} \sum_{0 \leqslant m_{j}<c_{j} p^{N}}\left(q^{m_{1}}\left[m_{1}\right]^{b_{1}}\right) \cdots\left(q^{m_{r}}\left[m_{r}\right]^{b_{r}}\right)
\end{array}
$$

where each $c_{i} \in \mathbb{N}=\{$ the set of positive integers $\}$ for $(i=1,2, \ldots, r)$.

## 3. On the multiple $p$-adic $q$-log gamma functions

The one-variable $p$-adic $q$-log gamma functions were defined and their application has already been treated by Kim [5].

In this section, we construct the multiple $p$-adic $q$-log gamma functions and the $p$-adic $q$ - $L$-functions in $n$-variables to give the formulae which express the values of the $p$-adic $q$ - $L$ functions in $n$-variables at positive integers in terms of multiple $p$-adic $q$-log gamma functions.

For any positive integers $r$ and $n$, and $x_{i} \in \mathbb{C}_{p}^{\times}(\forall i)$, we define the $p$-adic $q$ - $L$-functions in $n$-variables as follows:
$L_{p, q}(s: r)=L_{p, q}\left(s_{1}, s_{2}, \ldots, s_{n}: r\right)=\int_{\mathbb{Z}_{p}^{\times r}} \prod_{1 \leqslant i \leqslant n} \frac{\left[x_{i}+y_{1}+\cdots+y_{r}\right]^{-s_{i}+1}}{s_{i}-1} \mathrm{~d} \mu_{q}(y)$.
In the case of $n=r=1$, note that $L_{p, q}(s: r)$ is the same $p$-adic $q$ - $L$-function, $L_{p, q}\left(s, \chi^{0}\right)$, which is defined in [1]. Let $k_{1}, k_{2}, \ldots, k_{n}$ be positive integers.

Indeed, we see that

$$
\begin{aligned}
L_{p, q}(1-k: r) & =L_{p, q}\left(1-k_{1}, 1-k_{2}, \ldots, 1-k_{n}: r\right) \\
& =(-1)^{n} \prod_{1 \leqslant i \leqslant n} \frac{1}{k_{i}}\left(\beta_{k_{i}}^{(r)}\left(x_{i}, q\right)-[p]^{k_{i}-r} \beta_{k_{i}}^{(r)}\left(x_{i}, q^{p}\right)\right)
\end{aligned}
$$

where $\beta_{k_{i}}^{(r)}\left(x_{i}, q\right)$ are $q$-Bernoulli polynomials of order $r$ which are defined in [5, 6].
Let $\log x=\sum_{k \geqslant 1}(-1)^{k-1} \frac{(x-1)^{k}}{k}$ be the $p$-adic $\log$ function. This sum is convergent for $|x-1|_{p}<1$. From now, we use the notation as follows:

$$
L(y)=L\left(y_{1}, y_{2}, \ldots, y_{r}\right)=\sum_{j=1}^{r} y_{j}
$$

The function $G_{p, q}(L: x)$ generalizing the $q$-extension of $p$-adic log gamma function is defined by
$G_{p, q}(L: x)=G_{p, q}\left(L(y): x_{1}, x_{2}, \ldots, x_{n}\right)=\int_{\mathbb{Z}_{p}^{\times r}} \prod_{1 \leqslant i \leqslant n} \log \left[x_{i}+L(y)\right] \mathrm{d} \mu_{q}(y)$
where each $x_{i} \in \mathbb{C}_{p}^{\times}$.

## Remarks.

(1) We call $G_{p, q}(L: x)$ the multiple $p$-adic $q$-log gamma function.
(2) Note that

$$
\begin{aligned}
G_{p, q}(L: x)= & \lim _{N_{1}, \ldots, N_{r} \rightarrow \infty} \frac{1}{\left[c_{1} p^{N_{1}}\right] \cdots\left[c_{r} p^{N_{r}}\right]} \\
& \times \sum_{1 \leqslant j \leqslant r} \sum_{0 \leqslant m_{j}<c_{j} p^{N}}^{*} q^{m_{1}+\cdots+m_{r}} \log \left[x_{i}+L(m)\right]
\end{aligned}
$$

where $m=\left(m_{1}, \ldots, m_{r}\right) \in \mathbb{Z}_{p}^{\times r}$.
(3) For any integer $k$, if we define a $q$-Bernoulli number with order $k$ as

$$
\left(\mathrm{e}^{\frac{t}{1-q}} \sum_{j=0}^{\infty} \frac{j+1}{[j+1]}(-1)^{j}\left(\frac{1}{1-q}\right)^{j} \frac{t^{j}}{j!}\right)^{k}=\sum_{n=0}^{\infty} \frac{\bar{\beta}_{n}^{(k)}}{n!} t^{n}
$$

then, by Corollary 1 , it is easy to see that

$$
\bar{\beta}_{n}{ }^{(k)}=\sum_{n=a_{1}+\cdots+a_{k}}\binom{n}{a_{1}, \ldots, a_{k}} \beta_{a_{1}} \beta_{a_{2}} \cdots \beta_{a_{k}}
$$

where $\beta_{a_{k}}$ are the Carlitz $q$-Bernoulli numbers [5, 6].
Theorem 2. Let $L_{p, q}\left(s_{1}, \ldots, s_{n}: r\right)$ be p-adic $q$-L-functions in $n$-variables and $G_{p, q}(L: x)$ be the $q$-extension of p-adic log multiple gamma function. Then we have

$$
\begin{equation*}
\frac{\partial}{\partial s_{1}} \cdots \frac{\partial}{\partial s_{n}} Z(1,1, \ldots, 1: q)=(-1)^{n} G_{p, q}(L: x) \tag{1}
\end{equation*}
$$

where $Z\left(s_{1}, \ldots, s_{n}: q\right)=\prod_{i=1}^{n}\left(s_{i}-1\right) L_{p, q}\left(s_{1}, s_{2}, \ldots, s_{n}: r\right)$.
(2) $\prod_{1 \leqslant i \leqslant n}(-1)^{a_{i}-2} \frac{1}{\left(a_{i}-1\right)!q^{\left(a_{i}-1\right) L}} \frac{\partial^{a_{1}-1}}{\partial\left[x_{1}\right]^{a_{1}-1}} \cdots \frac{\partial^{a_{n}-1}}{\partial\left[x_{n}\right]^{a_{n}-1}} G_{p, q}(L: x)$

$$
=L_{p, q}\left(a_{1}, a_{2}, \ldots, a_{n}: r\right)
$$

where each $a_{i}$ is a positive integer bigger than 2.
The proof of the above theorem is not difficult (cf. [5, 6]).
Remark. For $s \in \mathbb{C}, q \in \mathbb{C}$ with $|q|<1$, define

$$
\begin{aligned}
\zeta_{q}^{(h, k)}(s)= & \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} \frac{q^{h\left(a_{1}+\cdots+a_{k}\right)}}{\left[a_{1}+\cdots+a_{k}\right]^{s}}+(q-1) \frac{1-s+h}{1-s} \\
& \times \sum_{a_{1}, \ldots, a_{k}=0}^{\infty} \frac{q^{h\left(a_{1}+\cdots+a_{k}\right)}}{\left[a_{1}+\cdots+a_{k}\right]^{s-1}}
\end{aligned}
$$

where $h, k$ are positive integers.
Note that $\zeta_{q}^{(h, k)}(s)$ is an analytic continuation for $\mathfrak{R}(s)>1$. If $k=1, m \in \mathbb{N}=\{1,2, \ldots\}$, then it was known in [6] that $\zeta_{q}^{(h, 1)}(1-m)=-\frac{\beta_{m}^{(h, 1)}}{m}$, where $\beta_{m}^{(h, 1)}$ are $q$-Bernoulli numbers with order $h$ which are defined in [6]. Finally, we would like to suggest the following question:
Question. Is there an analogue of Bernoulli numbers which $\zeta_{q}^{(h, k)}(1-m)$ can be viewed as interpolating, in the same way that $\zeta_{q}^{(h, 1)}(1-m)$ interpolates the $q$-Bernoulli number with order $h$ ?

References [7-9] are not cited above but are also important to the reader.

## Acknowledgment

This work was supported by Korea Research Foundation grant KRF-99-005-D00026.

## References

[1] Albeverio S, Bayod J M, Perez-Garcia C, Cianci R and Khrennikov A Yu 1999 Acta Appl. Mathematicae 57205
[2] Dubischar D, Gundlach V M, Steinkamp O and Khrennikov A Yu 1999 Il Nuov Cimento B 114373
[3] Khrennikov A Yu 1994 p-Adic Valued Distributions in Mathematical Physics (Dordrecht: Kluwer)
[4] Khrennikov A Yu 1997 Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models (Dordrecht: Kluwer)
[5] Kim T 2001 Proc. Jangjeon Math. Soc. 245
[6] Kim T and Rim S H 2000 Advanced Stud. Contemp. Math. 29
[7] Murphy G J 2001 Advanced Stud. Contemp. Math. 331
[8] Vladimirov V S, Volovich I V and Zelenov E I 1994 p-Adic Analysis and Mathematical Physics (Singapore: World Scientific)
[9] Zelenov E I 1994 Russian Acad. Sci. Izv. Math. 43421


[^0]:    4 Author to whom correspondence should be addressed.

