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Abstract
By using multiplep-adic q-integrals, we define thep-adic q-L-function in
n-variables and theq-extension ofp-adic log multiple gamma functions. From
these definitions, we show that the values of thep-adicq-L-function at positive
integers can be expressed in terms of theq-extension ofp-adic log multiple
gamma functions.

PACS number: 02.10.De
Mathematics Subject Classification: 11S80

1. Introduction

Let p be a fixed prime and letCp denote thep-adic completion of the algebraic closure ofQp.

Ford a fixed positive integer with(p, d) = 1, let

X = Xd = lim←
N

Z/dpNZ X1 = Zp

X∗ =
⋃

0<a<dp
(a,p)=1

a + dpZp

a + dpNZp = {x ∈ X | x ≡ a (mod dpN)}
wherea ∈ Z lies in 0� a < dpN .

Thep-adic absolute value inCp is normalized so that|p|p = 1
p

. C(Zp,Cp) will denote
the set of all continuousf: Zp → Cp. Let U1 ⊂ Cp denote the open unit disc about 1 and
Ud = {u ∈ Cp||ud − 1|p < 1} the union of the open unit discs arounddth root of unity.
Let Um = Ud × Um−1

1 . When one talks ofq-extension,q is variously considered as an
indeterminate, a complex numberq ∈ C or a p-adic numberq ∈ Cp. If q ∈ C, then we
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normally assume|q| < 1. If q ∈ Cp, then we normally assume|q − 1|p < p
− 1

p−1 , so that
qx = exp(x logq) for |x|p � 1. Throughout this paper, we use the following notation:

[x] = [x : q] = 1− qx

1− q
.

In this paper, we construct thep-adicq-L-function inn-variables and the multiplep-adicq-log
gamma function by using the values of the multiplep-adic q-integral. Finally, we give the
formulae which express the values of thep-adicq-L-function inn-variables at positive integers
in terms of the multiplep-adicq-log gamma functions.

In [1, 2], the authors studied orthogonal and symmetric operators in non-Archi-medean
Hilbert spaces in connection withp-adic quantization.

Orthogonal isometric isomorphism ofp-adic Hilbert spaces preserves precision of
measurements. In [1], the authors also studied the properties of orthogonal operators.

As the quantum field theory allows infinite degree of freedom, we need to propose an
infinite-dimensional non-Archimedean analysis if we wish to study quantum field theory with
non-Archimedean valued fields. Such analysis has already been presented by Khrennikov
in [3].

The quantization of a bosonic non-Archimedean valued field is carried out in the functional
integral formalism [3]. Khrennikov [4] tried to build ap-adic picture of reality based on the
field of p-adic numbersQp and the corresponding non-Archimedean analysis. He showed that
many problems of description of reality with the aid of real numbers are induced by unlimited
application of the non-Archimedean axiom. This axiom means that the physical observable
can be measured with an infinite exactness. Khrennikov’sp-adic model of physical reality is
based on a finite exactness of measurement which violates the Archimedean axiom.

As with the abovep-adic model of physical reality, our results stimulate quantum
mechanics by using mathematical apparatus, namely, the properties of theq-analogue of zeta
function, the definition ofp-adicq-L-functions andq-Mahler’s theory ofp-adicq-integration
with respect to a ringZp of p-adic integers. Iwasawa isomorphism and thep-adicq-log gamma
functions are used in sections 2 and 3, repectively.

2. p-adic q-integral on compact subgroups of Cp.

For f ∈ C(1)(Zp) = {the set of strictly differentiable functions onZp}, let us start with the
expressions

1

[pN ]

∑
0�j<pN

qjf (j) =
∑

0�j<pN

f (j)µq

(
j + pNZp

)
(cf. [3, 5, 6])

representing theq-analogue of the Riemann sums forf. The integral off onZp will be defined
as the limit(N →∞) of these sums, when it exists.

Thep-adicq-integral of a functionf ∈ C(1)(Zp) is defined by∫
Zp

f (x) dµq(x) = lim
N→∞

1

[pN ]

∑
0�j<pN

f (j)qj .

Forf ∈ C(1)(Zp), it is easy to see that∣∣∣∣∣
∫

Zp

f (x) dµq(x)

∣∣∣∣∣
p

� p||f ||1

where||f ||1 = sup{|f (0)|p, supx� =y | f (x)−f (y)
x−y |p}.
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If fn → f in C(1), namely||fn − f ||1→ 0, then∫
Zp

fn(x) dµq(x)→
∫

Zp

f (x) dµq(x)

(see [4]). Theq-analogue of the binomial coefficient is known as

[x
n

]
= [x][x − 1] · · · [x − n + 1]

[n]!
where [n]! =

n∏
i=1

[i] (cf. [2]).

Note that [
x + 1

n

]
=

[
x

n− 1

]
+ qx

[x
n

]
= qx−n

[
x

n− 1

]
+

[x
n

]
.

Thus we see that∫
Zp

[x
n

]
dµq(x) = (−1)n

[n + 1]
qn+1−(n+1

2 ).

For anya = (a1, a2, . . . , am) ∈ Um, let µq denote thep-adic distribution onXm which is
defined on the standard basis of the compact-open sets by

µq(a + dpNXm) = qa

[dpN1][pN2] · · · [pNm ]

where the notationa+dpNXm = (a1+dpN1Zp)×(a2+pN2Zp)×· · ·×(am+pNmZp) ⊂ Xm,
qa denotes

∏
j q

aj . Then we have the following:

Theorem 1. For any uniformly differentiable function f:Xm → Cp, we have∫
Xm

f (x) dµq(x)

which is bounded and locally analytic in each q on Um.

Proof. Theorem 1 is proved by the definition ofp-adicq-integral [5, 6]. �

Corollary 1. For any b1, b2, . . . , br ∈ Z �0, y = (y1, . . . , yr) ∈ Zr
p, we see that∫

Zr
p

[y1]b1[y2]b2 · · · [yr ]br dµq(y)

is the coefficient of
t
b1
1 ···t b

r

r

b1!b2!···br ! in the Laurent expansion of the function

r∏
l=1


e

tl
1−q

∞∑
j=0

j + 1

[j + 1]
(−1)j

(
1

1− q

)j t
j
l

j !


 .

The proof of Corollary 1 is not difficult [5].
Note that∫

Zr
p

[y1]b1 · · · [yr ]br dµq(y) = lim
N1,...,Nr→∞

1[
c1pN1

] · · · [crpNr
]

×
∑

1�j�r

∑
0�mj<cjpN

(
qm1[m1]b1

) · · · (qmr [mr ]br
)

where eachci ∈ N = {the set of positive integers} for (i = 1,2, . . . , r).
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3. On the multiple p-adic q-log gamma functions

The one-variablep-adicq-log gamma functions were defined and their application has already
been treated by Kim [5].

In this section, we construct the multiplep-adic q-log gamma functions and thep-adic
q-L-functions inn-variables to give the formulae which express the values of thep-adicq-L-
functions inn-variables at positive integers in terms of multiplep-adicq-log gamma functions.

For any positive integersr andn, andxi ∈ C×p (∀i), we define thep-adicq-L-functions in
n-variables as follows:

Lp,q(s : r) = Lp,q(s1, s2, . . . , sn : r) =
∫

Z×rp

∏
1�i�n

[xi + y1 + · · · + yr ]−si+1

si − 1
dµq(y).

In the case ofn = r = 1, note thatLp,q(s : r) is the samep-adicq-L-function,Lp,q(s, χ
0),

which is defined in [1]. Letk1, k2, . . . , kn be positive integers.
Indeed, we see that

Lp,q(1− k : r) = Lp,q(1− k1,1− k2, . . . ,1− kn : r)

= (−1)n
∏

1�i�n

1

ki

(
β
(r)
ki

(xi, q)− [p]ki−rβ(r)
ki

(xi, q
p)

)

whereβ(r)
ki

(xi, q) areq-Bernoulli polynomials of orderr which are defined in [5, 6].

Let logx =∑
k�1(−1)k−1 (x−1)k

k
be thep-adic log function. This sum is convergent for

|x − 1|p < 1. From now, we use the notation as follows:

L(y) = L(y1, y2, . . . , yr) =
r∑

j=1

yj .

The functionGp,q(L : x) generalizing theq-extension ofp-adic log gamma function is defined
by

Gp,q(L : x) = Gp,q(L(y) : x1, x2, . . . , xn) =
∫

Z×rp

∏
1�i�n

log[xi + L(y)] dµq(y)

where eachxi ∈ C×p .

Remarks.

(1) We callGp,q(L : x) the multiplep-adicq-log gamma function.
(2) Note that

Gp,q(L : x) = lim
N1,...,Nr→∞

1[
c1pN1

] · · · [crpNr
]

×
∑

1�j�r

∗∑
0�mj<cj p

N

qm1+···+mr log[xi + L(m)]

wherem = (m1, . . . ,mr) ∈ Z×rp .
(3) For any integerk, if we define aq-Bernoulli number with orderk as

e
t

1−q
∞∑
j=0

j + 1

[j + 1]
(−1)j

(
1

1− q

)j
tj

j !




k

=
∞∑
n=0

β̄
(k)
n

n!
tn
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then, by Corollary 1, it is easy to see that

β̄n
(k) =

∑
n=a1+···+ak

(
n

a1, . . . , ak

)
βa1βa2 · · ·βak

whereβak are the Carlitzq-Bernoulli numbers [5, 6].

Theorem 2. Let Lp,q(s1, . . . , sn : r) be p-adic q-L-functions in n-variables and Gp,q(L: x)
be the q-extension of p-adic log multiple gamma function. Then we have

(1)
∂

∂s1
· · · ∂

∂sn
Z(1,1, . . . ,1 : q) = (−1)nGp,q(L : x)

where Z(s1, . . . , sn : q) =∏n
i=1(si − 1)Lp,q(s1, s2, . . . , sn : r).

(2)
∏

1�i�n

(−1)ai−2 1

(ai − 1)!q(ai−1)L

∂a1−1

∂ [x1]a1−1
· · · ∂an−1

∂ [xn]an−1
Gp,q(L : x)

= Lp,q(a1, a2, . . . , an : r),

where each ai is a positive integer bigger than 2.

The proof of the above theorem is not difficult (cf. [5, 6]) .

Remark. For s ∈ C, q ∈ C with |q| < 1, define

ζ (h,k)
q (s) =

∞∑
a1,...,ak=0

qh(a1+···+ak)

[a1 + · · · + ak]s
+ (q − 1)

1− s + h

1− s

×
∞∑

a1,...,ak=0

qh(a1+···+ak)

[a1 + · · · + ak]s−1

whereh, k are positive integers.
Note thatζ (h,k)

q (s) is an analytic continuation for�(s) > 1. If k = 1,m ∈ N = {1,2, . . .},
then it was known in [6] thatζ (h,1)

q (1−m) = −β
(h,1)
m

m
, whereβ(h,1)

m areq-Bernoulli numbers
with orderh which are defined in [6]. Finally, we would like to suggest the following question:

Question. Is there an analogue of Bernoulli numbers whichζ
(h,k)
q (1− m) can be viewed as

interpolating, in the same way thatζ (h,1)
q (1− m) interpolates theq-Bernoulli number with

orderh?

References [7–9] are not cited above but are also important to the reader.
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